基于玩家行为、道具估值、内容消耗及活动表现设计数值分析系统。
应用Python机器学习模型预测道具价值并分群玩家,支撑游戏经济平衡与精准营销。
开发新玩法时对应用内追踪器(如武器兑换、PVE金币奖励)进行特征工程。
基于GCP构建数据管道(BigQuery数据提取→Python清洗转换)。
Leading numerical system design and analysis based on gameplay behavior, item valuation, content consumption, and campaign performance.
Applied machine learning models via Python to forecast item values and segment players, supporting balanced game economy and targeted campaigns.
Performed feature engineering for in-app trackers (e.g. weapon redeems, coins award in PVE) when developing new playable content.
Built data pipeline via GCP including extraction from BigQuery, data transformation, processing using Python.